Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces.

نویسندگان

  • I-Chia Peng
  • Chin-Chen Yeh
  • Yi-Tung Lu
  • Saradaprasan Muduli
  • Qing-Dong Ling
  • Abdullah A Alarfaj
  • Murugan A Munusamy
  • S Suresh Kumar
  • Kadarkarai Murugan
  • Hsin-chung Lee
  • Yung Chang
  • Akon Higuchi
چکیده

Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data of continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces

This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol met...

متن کامل

Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment.

Using surface initiated atomic transfer radical polymerization (ATRP) and an injection method, a poly(N-isopropylacrylamide)-b-poly(acrylic acid)-g-RGD (PNIPAAm-b-PAA-g-RGD) gradient surface was prepared. First, a thermoresponsive surface with a constant thickness of PNIPAAm was fabricated, onto which the AA monomers were block copolymerized using the PNIPAAm macromolecules as initiators. Durin...

متن کامل

Intact endothelial cell sheet harvesting from thermoresponsive surfaces coated with cell adhesion promoters.

Recently, with the development of smart polymers, research has looked to using thermoresponsive polymers as cell culture substrates. These novel surfaces allow the cultivation of cells without enzymes using the thermoresponsive phase transition property of poly(N-isopropylacrylamide) (PNIPAAm). However, this requires expensive techniques to generate a sufficiently thin film that allows cell adh...

متن کامل

Thermoresponsive Micropatterned Substrates for Single Cell Studies

We describe the design of micropatterned surfaces for single cell studies, based on thermoresponsive polymer brushes. We show that brushes made of poly(N-isopropylacrylamide) grafted at high surface density display excellent protein and cell anti-adhesive properties. Such brushes are readily patterned at the micron scale via deep UV photolithography. A proper choice of the adhesive pattern shap...

متن کامل

Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries.

The smart thermoresponsive coatings and surfaces that have been explicitly designed for cell culture are mostly based on poly(N-isopropylacrylamide) (PNIPAAm). This polymer is characterized by a sudden precipitation on heating, switching from a hydrophilic to a hydrophobic state. Mammalian cells cultured on such thermoresponsive substrates can be recovered as confluent cell sheets, while keepin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2016